If you guys are getting coupon expired or course is not free after opening the link, then it is due to the fact that course instructors provide only few hundreds or thousands of slots which get exhausted. So, try to enroll in the course as soon as it is posted in the channel. The Coupons may expire any time for instant notification follow telegram channel

New customer offer! Top courses from $13.99 when you first visit Udemy

Learn core concepts of Machine Learning. Apply ML techniques to real-world problems and develop AI/ML based applications

What you’ll learn

  • Learn the A-Z of Machine Learning from scratch
  • Build your career in Machine Learning, Deep Learning, and Data Science
  • Become a top Machine Learning engineer
  • Core concepts of various Machine Learning methods
  • Mathematical concepts and algorithms used in Machine Learning techniques
  • Solve real world problems using Machine Learning
  • Develop new applications based on Machine Learning


    Uplatz offers this in-depth course on Machine Learning concepts and implementing machine learning with Python.

    Objective: Learning basic concepts of various machine learning methods is primary objective of this course. This course specifically make student able to learn mathematical concepts, and algorithms used in machine learning techniques for solving real world problems and developing new applications based on machine learning.

    Course Outcomes: After completion of this course, student will be able to:

    1. Apply machine learning techniques on real world problem or to develop AI based application

    2. Analyze and Implement Regression techniques

    3. Solve and Implement solution of Classification problem

    4. Understand and implement Unsupervised learning algorithms


    • Python for Machine Learning

    Introduction of Python for ML, Python modules for ML, Dataset, Apply Algorithms on datasets, Result Analysis from dataset, Future Scope of ML.

    • Introduction to Machine Learning

    What is Machine Learning, Basic Terminologies of Machine Learning, Applications of ML, different Machine learning techniques, Difference between Data Mining and Predictive Analysis, Tools and Techniques of Machine Learning.

    • Types of Machine Learning

    Supervised Learning, Unsupervised Learning, Reinforcement Learning. Machine Learning Lifecycle.

    • Supervised Learning : Classification and Regression

    Classification: K-Nearest Neighbor, Decision Trees, Regression: Model Representation, Linear Regression.

    • Unsupervised and Reinforcement Learning

    Clustering: K-Means Clustering, Hierarchical clustering, Density-Based Clustering.

    Detailed Syllabus of Machine Learning Course

    1. Linear Algebra

    • Basics of Linear Algebra
    • Applying Linear Algebra to solve problems

    2. Python Programming

    • Introduction to Python
    • Python data types
    • Python operators
    • Advanced data types
    • Writing simple Python program
    • Python conditional statements
    • Python looping statements
    • Break and Continue keywords in Python
    • Functions in Python
    • Function arguments and Function required arguments
    • Default arguments
    • Variable arguments
    • Build-in functions
    • Scope of variables
    • Python Math module
    • Python Matplotlib module
    • Building basic GUI application
    • NumPy basics
    • File system
    • File system with statement
    • File system with read and write
    • Random module basics
    • Pandas basics
    • Matplotlib basics
    • Building Age Calculator app

    3. Machine Learning Basics

    • Get introduced to Machine Learning basics
    • Machine Learning basics in detail

    4. Types of Machine Learning

    • Get introduced to Machine Learning types
    • Types of Machine Learning in detail

    5. Multiple Regression

    6. KNN Algorithm

    • KNN intro
    • KNN algorithm
    • Introduction to Confusion Matrix
    • Splitting dataset using TRAINTESTSPLIT

    7. Decision Trees

    • Introduction to Decision Tree
    • Decision Tree algorithms

    8. Unsupervised Learning

    • Introduction to Unsupervised Learning
    • Unsupervised Learning algorithms
    • Applying Unsupervised Learning

    9. AHC Algorithm

    10. K-means Clustering

    • Introduction to K-means clustering
    • K-means clustering algorithms in detail

    11. DBSCAN

    • Introduction to DBSCAN algorithm
    • Understand DBSCAN algorithm in detail
    • DBSCAN program

    Who this course is for:

    • Machine Learning Engineers & Artificial Intelligence Engineers
    • Data Scientists & Data Engineers
    • Newbies and Beginners aspiring for a career in Data Science and Machine Learning
    • Machine Learning SMEs & Specialists
    • Anyone (with or without data background) who wants to become a top ML engineer and/or Data Scientist
    • Data Analysts and Data Consultants
    • Data Visualization and Business Intelligence Developers/Analysts
    • CEOs, CTOs, CMOs of any size organizations
    • Software Programmers and Application Developers
    • Senior Machine Learning and Simulation Engineers
    • Machine Learning Researchers – NLP, Python, Deep Learning
    • Deep Learning and Machine Learning enthusiasts
    • Machine Learning Specialists
    • Machine Learning Research Engineers – Healthcare, Retail, any sector
    • Python Developers, Machine Learning, IOT, AirFlow, MLflow, Kubef
    • Computer Vision / Deep Learning Engineers – Python

    [maxbutton id=”1″ url=”” ]