Note: 

   

If you guys are getting coupon expired or course is not free after opening the link, then it is due to the fact that course instructors provide only few hundreds or thousands of slots which get exhausted. So, try to enroll in the course as soon as it is posted in the channel. The Coupons may expire any time for instant notification follow telegram channel

New customer offer! Top courses from $13.99 when you first visit Udemy

Learn the core concepts of Machine Learning and its algorithms and how to implement them in Python 3

Description

‘Machine Learning is all about how a machine with an artificial intelligence learns like a human being’

 

Welcome to the course on Machine Learning and Implementing it using Python 3. As the title says, this course recommends to have a basic knowledge in Python 3 to grasp the implementation part easily but it is not compulsory.

 

This course has strong content on the core concepts of ML such as it’s features, the steps involved in building a ML Model – Data Preprocessing, Finetuning the Model, Overfitting, Underfitting, Bias, Variance, Confusion Matrix and performance measures of a ML Model. We’ll understand the importance of many preprocessing techniques such as Binarization, MinMaxScaler, Standard Scaler

 

We can implement many ML Algorithms in Python using scikit-learn library in a few lines. Can’t we? Yet, that won’t help us to understand the algorithms. Hence, in this course, we’ll first look into understanding the mathematics and concepts behind the algorithms and then, we’ll implement the same in Python. We’ll also visualize the algorithms in order to make it more interesting. The algorithms that we’ll be discussing in this course are:

 

1. Linear Regression

 

2. Logistic Regression

 

3. Support Vector Machines

 

4. KNN Classifier

 

5. KNN Regressor

 

6. Decision Tree

 

7. Random Forest Classifier

 

8. Naive Bayes’ Classifier

 

9. Clustering

 

And so on. We’ll be comparing the results of all the algorithms and making a good analytical approach. What are you waiting for?

 

Who this course is for:

Beginner Python developers

Enroll Now