Note: 

   

If you guys are getting coupon expired or course is not free after opening the link, then it is due to the fact that course instructors provide only few hundreds or thousands of slots which get exhausted. So, try to enroll in the course as soon as it is posted in the channel. The Coupons may expire any time for instant notification follow telegram channel

New customer offer! Top courses from $13.99 when you first visit Udemy

You get to learn about how to use spark python or PySpark to perform data analysis.

Description

This module on PySpark Tutorials aims to explain the intermediate concepts such as those like the use of Spark session in case of later versions and the use of Spark Config and Spark Context in case of earlier versions. This will also help you in understanding how the Spark-related environment is set up, concepts of Broadcasting and accumulator, other optimization techniques include those like parallelism, tungsten, and catalyst optimizer. You will also be taught about the various compression techniques such as Snappy and Zlib. We will also understand and talk about the various Big data ecosystem related concepts such as HDFS and block storage, various components of Spark such as Spark Core, Mila, GraphX, R, Streaming, SQL, etc. and will also study the basics of Python language which is related and relevant to be used along with Apache Spark thereby making it Pyspark. We will learn the following in this course:

 

Regression

 

Linear Regression

 

Output Column

 

Test Data

 

Prediction

 

Generalized Linear Regression

 

Forest Regression

 

Classification

 

Binomial Logistic Regression

 

Multinomial Logistic Regression

 

Decision Tree

 

Random Forest

 

Clustering

 

K-Means Model

 

Pyspark is a big data solution that is applicable for real-time streaming using Python programming language and provides a better and efficient way to do all kinds of calculations and computations. It is also probably the best solution in the market as it is interoperable i.e. Pyspark can easily be managed along with other technologies and other components of the entire pipeline. The earlier big data and Hadoop techniques included batch time processing techniques.

 

Pyspark is an open-source program where all the codebase is written in Python which is used to perform mainly all the data-intensive and machine learning operations. It has been widely used and has started to become popular in the industry and therefore Pyspark can be seen replacing other spark based components such as the ones working with Java or Scala. One unique feature which comes along with Pyspark is the use of datasets and not data frames as the latter is not provided by Pyspark. Practitioners need more tools that are often more reliable and faster when it comes to streaming real-time data. The earlier tools such as Map-reduce made use of the map and the reduce concepts which included using the mappers, then shuffling or sorting and then reducing them into a single entity. This MapReduce provided a way of parallel computation and calculation. The Pyspark makes use of in-memory techniques that don’t make use of the space storage being put into the hard disk. It provides a general-purpose and a faster computation unit.

 

Who this course is for:

The target audience for these PySpark Tutorials includes ones such as the developers, analysts, software programmers, consultants, data engineers, data scientists , data analysts, software engineers, Big data programmers, Hadoop developers. Other audience includes ones such as students and entrepreneurs who are looking to create something of their own in the space of big data.

Enroll Now